Statistical Inference on Random Graphs: Comparative Power Analyses via Monte Carlo
نویسندگان
چکیده
منابع مشابه
Statistical Inference on Random Graphs: Comparative Power Analyses via Monte Carlo
We present a comparative power analysis, via Monte Carlo, of various graph invariants used as statistics for testing graph homogeneity versus a “chatter” alternative – the existence of a local region of excessive activity. Our results indicate that statistical inference on random graphs, even in a relatively simple setting, can be decidedly non-trivial. We find that none of the graph invariants...
متن کاملMonte Carlo Techniques for Bayesian Statistical Inference – A comparative review
In this article, we summariseMonte Carlo simulationmethods commonly used in Bayesian statistical computing. We give descriptions for each algorithm and provide R codes for their implementation via a simple 2-dimensional example. We compare the relative merits of these methods qualitatively by considering their general user-friendliness, and numerically in terms of mean squared error and computa...
متن کاملMonte Carlo inference via greedy importance sampling
We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...
متن کاملPhylogenetic Inference via Sequential Monte Carlo
Bayesian inference provides an appealing general framework for phylogenetic analysis, able to incorporate a wide variety of modeling assumptions and to provide a coherent treatment of uncertainty. Existing computational approaches to bayesian inference based on Markov chain Monte Carlo (MCMC) have not, however, kept pace with the scale of the data analysis problems in phylogenetics, and this ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2011
ISSN: 1061-8600,1537-2715
DOI: 10.1198/jcgs.2010.09004